Skip to contents

This vignette demonstrates how to use ineAtlas to create choropleth maps of socioeconomic indicators across Spanish municipalities.

Load required packages

First, let’s load the required packages. We will use the mapSpain package to get the municipality geometries.

library(ineAtlas)
#> Error in get(paste0(generic, ".", class), envir = get_method_env()) : 
#>   object 'type_sum.accel' not found
library(mapSpain)
library(dplyr)
library(ggplot2)
library(ggtext)

Get municipality data

Let’s fetch income data for all Spanish municipalities for the year 2022:

# Get municipality level income data
mun_data <- get_atlas(
    category = "income",
    level = "municipality"
) %>%
    filter(year == 2022)

# Preview the data
head(mun_data)
#> # A tibble: 6 × 11
#>   mun_code mun_name  prov_code prov_name  year net_income_pc net_income_hh
#>   <chr>    <chr>     <chr>     <chr>     <dbl>         <dbl>         <dbl>
#> 1 02001    Abengibre 02        Albacete   2022         13063         32657
#> 2 02002    Alatoz    02        Albacete   2022         11346         24306
#> 3 02003    Albacete  02        Albacete   2022         13836         35722
#> 4 02004    Albatana  02        Albacete   2022         10767         23630
#> 5 02005    Alborea   02        Albacete   2022         10489         22177
#> 6 02006    Alcadozo  02        Albacete   2022         10709         23819
#> # ℹ 4 more variables: net_income_equiv <dbl>, median_income_equiv <dbl>,
#> #   gross_income_pc <dbl>, gross_income_hh <dbl>

Get municipality geometries

Now we’ll get the municipality geometries from mapSpain:

# Get municipality geometries
mun_map <- esp_get_munic_siane() %>%
    # Join with our income data
    left_join(
        mun_data,
        by = c("LAU_CODE" = "mun_code")
    )

# Preview the joined data
glimpse(mun_map)
#> Rows: 8,213
#> Columns: 18
#> $ codauto             <chr> "01", "01", "01", "01", "01", "01", "01", "01", "0…
#> $ ine.ccaa.name       <chr> "Andalucía", "Andalucía", "Andalucía", "Andalucía"…
#> $ cpro                <chr> "04", "04", "04", "04", "04", "04", "04", "04", "0…
#> $ ine.prov.name       <chr> "Almería", "Almería", "Almería", "Almería", "Almer…
#> $ cmun                <chr> "001", "002", "003", "004", "005", "006", "007", "…
#> $ name                <chr> "Abla", "Abrucena", "Adra", "Albanchez", "Albolodu…
#> $ LAU_CODE            <chr> "04001", "04002", "04003", "04004", "04005", "0400…
#> $ mun_name            <chr> "Abla", "Abrucena", "Adra", "Albanchez", "Albolodu…
#> $ prov_code           <chr> "04", "04", "04", "04", "04", "04", "04", "04", "0…
#> $ prov_name           <chr> "Almería", "Almería", "Almería", "Almería", "Almer…
#> $ year                <dbl> 2022, 2022, 2022, 2022, 2022, 2022, 2022, 2022, 20…
#> $ net_income_pc       <dbl> 11635, 10927, 9316, 10464, 11054, 9761, 10103, 120…
#> $ net_income_hh       <dbl> 25522, 22066, 25639, 21030, 23237, 26991, 19494, 2…
#> $ net_income_equiv    <dbl> 16511, 15129, 14206, 14958, 15436, 15267, 13757, 1…
#> $ median_income_equiv <dbl> 15050, 13650, 12950, 13650, 14350, 13650, 12250, 1…
#> $ gross_income_pc     <dbl> 13305, 12361, 10650, 11885, 12457, 11545, 11311, 1…
#> $ gross_income_hh     <dbl> 29187, 24962, 29311, 23885, 26187, 31924, 21823, 3…
#> $ geom                <MULTIPOLYGON [°]> MULTIPOLYGON (((-2.759034 3..., MULTI…

Create a choropleth map

Let’s create a map showing net income per capita across Spanish municipalities:

# Create the map
ggplot(mun_map) +
    geom_sf(
        aes(fill = cut(net_income_pc,
            breaks = c(-Inf, 8000, 10000, 12000, 14000, 16000, Inf),
            labels = c("<8k", "8-10k", "10-12k", "12-14k", "14-16k", ">16k")
        )),
        color = NA
    ) +
    labs(
        title = "Income per capita across Spanish municipalities, 2022",
        caption = "@pablogguz_ | The map shows net income per capita at the municipality level. Source: Spanish Statistical Office and author's calculations."
    ) +
    scale_fill_manual(
        name = "Net income per \ncapita, 2022 (€)",
        values = c("#67001F", "#B2182B", "#D6604D", "#4393C3", "#2166AC", "#053061"),
        na.value = "grey80"
    ) +
    theme_void() +
    theme(
        text = element_text(family = "Open Sans", size = 16),
        plot.title = element_text(size = 18, margin = margin(b = 20)),
        legend.position = c(0.2, 0.5),
        plot.caption = element_textbox_simple(
            size = 12,
            color = "grey40",
            margin = margin(t = 20),
            hjust = 0,
            halign = 0,
            lineheight = 1.2
        )
    )

Identifying high and low income areas

Let’s find the top 10 municipalities by net income per capita:

mun_data %>%
  arrange(desc(net_income_pc)) %>%
  select(mun_name, net_income_pc) %>%
  head(10) %>%
  mutate(
    net_income_pc = round(net_income_pc, 2)
  )
#> # A tibble: 10 × 2
#>    mun_name                 net_income_pc
#>    <chr>                            <dbl>
#>  1 Pozuelo de Alarcón               29258
#>  2 Oroz-Betelu/Orotz-Betelu         25780
#>  3 Goñi                             25532
#>  4 Matadepera                       24814
#>  5 Bolvir                           24812
#>  6 Boadilla del Monte               24748
#>  7 Palau de Santa Eulàlia           24437
#>  8 Madremanya                       24190
#>  9 Vilamòs                          24052
#> 10 Brull, El                        23957

And the bottom 10:

mun_data %>%
  arrange(net_income_pc) %>%
  select(mun_name, net_income_pc) %>%
  head(10) %>%
  mutate(
    net_income_pc = round(net_income_pc, 2)
  )
#> # A tibble: 10 × 2
#>    mun_name            net_income_pc
#>    <chr>                       <dbl>
#>  1 Odèn                         6274
#>  2 Torre del Burgo              6277
#>  3 Manjarrés                    7146
#>  4 Huesa                        7603
#>  5 Darro                        7712
#>  6 Guadahortuna                 7757
#>  7 Iznalloz                     7777
#>  8 Palmar de Troya, El          7779
#>  9 Albuñol                      7949
#> 10 Palomas                      8036